Large or very large spatial (and spatio-temporal) datasets have become common place in many environmental and climate studies. These data are often collected in non-Euclidean spaces (such as the planet Earth) and they often present non-stationary anisotropies. This paper proposes a generic approach to model Gaussian Random Fields (GRFs) on compact Riemannian manifolds that bridges the gap between existing works on non-stationary GRFs and random fields on manifolds. This approach can be applied to any smooth compact manifolds, and in particular to any compact surface. By defining a Riemannian metric that accounts for the preferential directions of correlation, our approach yields an interpretation of the ''local anisotropies'' as resulting from ''local'' deformations of the domain. We provide scalable algorithms for the estimation of the parameters and for optimal prediction by kriging and simulation able to tackle very large grids. Stationary and non-stationary illustrations are provided.
翻译:大型或非常大的空间( 和时空) 数据集已成为许多环境和气候研究中常见的地方。 这些数据通常在非欧洲空间( 如行星地球) 中收集, 并且往往呈现非静止的厌食性。 本文建议对紧凑的里格曼方形的高西亚随机场( GRFs) 模型采取一种通用方法, 以弥合非静止的GRF现有工程与随机地块现有工程之间的差距。 这种方法可以适用于任何平滑的紧凑方块, 特别是任何紧凑的表面。 通过定义用于说明优先相关方向的里曼度, 我们的方法可以对“ 本地异地性植物” 进行解释, 因为“ 本地” 的域变形。 我们提供了可缩放的算法, 用以估计参数, 并通过能够处理非常大的电网进行最优化的预测 。 提供了固定和非静止的示例 。