We undertake a precise study of the non-asymptotic properties of vanilla generative adversarial networks (GANs) and derive theoretical guarantees in the problem of estimating an unknown $d$-dimensional density $p^*$ under a proper choice of the class of generators and discriminators. We prove that the resulting density estimate converges to $p^*$ in terms of Jensen-Shannon (JS) divergence at the rate $(\log n/n)^{2\beta/(2\beta+d)}$ where $n$ is the sample size and $\beta$ determines the smoothness of $p^*.$ This is the first result in the literature on density estimation using vanilla GANs with JS rates faster than $n^{-1/2}$ in the regime $\beta>d/2.$
翻译:我们对香草基因对抗网络(GANs)的非物质特性进行了精确的研究,并在根据发电机和导师类别适当选择估算未知的美元-维密度问题时,从理论上提供了保证,我们证明,由此得出的密度估计在Jensen-Shannon(JS)的差异方面,以美元(log n/n)2\beta/(2\beta+d)美元(美元)的汇率(美元为抽样规模)和美元(beta)美元决定了美元是否平稳。 这是用香草GANs和JS的汇率高于美元-1/2美元(美元/美元/美元/美元/美元)进行密度估计的文献的第一个结果。