By adopting a more flexible definition of unlearning and adjusting the model distribution to simulate training without the targeted data, approximate machine unlearning provides a less resource-demanding alternative to the more laborious exact unlearning methods. Yet, the unlearning completeness of target samples-even when the approximate algorithms are executed faithfully without external threats-remains largely unexamined, raising questions about those approximate algorithms' ability to fulfill their commitment of unlearning during the lifecycle. In this paper, we introduce the task of Lifecycle Unlearning Commitment Management (LUCM) for approximate unlearning and outline its primary challenges. We propose an efficient metric designed to assess the sample-level unlearning completeness. Our empirical results demonstrate its superiority over membership inference techniques in two key areas: the strong correlation of its measurements with unlearning completeness across various unlearning tasks, and its computational efficiency, making it suitable for real-time applications. Additionally, we show that this metric is able to serve as a tool for monitoring unlearning anomalies throughout the unlearning lifecycle, including both under-unlearning and over-unlearning. We apply this metric to evaluate the unlearning commitments of current approximate algorithms. Our analysis, conducted across multiple unlearning benchmarks, reveals that these algorithms inconsistently fulfill their unlearning commitments due to two main issues: 1) unlearning new data can significantly affect the unlearning utility of previously requested data, and 2) approximate algorithms fail to ensure equitable unlearning utility across different groups. These insights emphasize the crucial importance of LUCM throughout the unlearning lifecycle. We will soon open-source our newly developed benchmark.
翻译:暂无翻译