Robotic grasping in highly noisy environments presents complex challenges, especially with limited prior knowledge about the scene. In particular, identifying good grasping poses with Bayesian inference becomes difficult due to two reasons: i) generating data from uninformative priors proves to be inefficient, and ii) the posterior often entails a complex distribution defined on a Riemannian manifold. In this study, we explore the use of implicit representations to construct scene-dependent priors, thereby enabling the application of efficient simulation-based Bayesian inference algorithms for determining successful grasp poses in unstructured environments. Results from both simulation and physical benchmarks showcase the high success rate and promising potential of this approach.
翻译:在高噪声环境中的机器人抓取面临着复杂的挑战,特别是对于场景的有限先验知识而言。特别是,在黎曼流形上定义的复杂分布的后验分布变得困难时,由于两个原因,即i)从无信息先验生成数据被证明是低效的,和ii)后验分布经常涉及定义在黎曼流形上的复杂分布。在本研究中,我们探索使用隐式表示来构建场景相关的先验,从而使得可以应用高效的基于模拟的贝叶斯推断算法来确定无结构环境中成功的抓取姿态。模拟和物理基准测试的结果展示了这种方法的高成功率和潜力。