Spiking Neural Networks (SNNs) provide an efficient computational mechanism for temporal signal processing, especially when coupled with low-power SNN inference ASICs. SNNs have been historically difficult to configure, lacking a general method for finding solutions for arbitrary tasks. In recent years, gradient-descent optimization methods have been applied to SNNs with increasing ease. SNNs and SNN inference processors therefore offer a good platform for commercial low-power signal processing in energy constrained environments without cloud dependencies. However, to date these methods have not been accessible to ML engineers in industry, requiring graduate-level training to successfully configure a single SNN application. Here we demonstrate a convenient high-level pipeline to design, train and deploy arbitrary temporal signal processing applications to sub-mW SNN inference hardware. We apply a new straightforward SNN architecture designed for temporal signal processing, using a pyramid of synaptic time constants to extract signal features at a range of temporal scales. We demonstrate this architecture on an ambient audio classification task, deployed to the Xylo SNN inference processor in streaming mode. Our application achieves high accuracy (98%) and low latency (100ms) at low power (<4muW inference power). Our approach makes training and deploying SNN applications available to ML engineers with general NN backgrounds, without requiring specific prior experience with spiking NNs. We intend for our approach to make Neuromorphic hardware and SNNs an attractive choice for commercial low-power and edge signal processing applications.
翻译:Spik 神经网络(SNN)为时间信号处理提供了一个高效的计算机制,特别是当与低功率 SNN 推断辅助系统相结合时。 SNN历来很难配置,缺乏找到任意任务解决方案的一般方法。近年来,对 SNN 应用了梯度-日光优化方法。 SNN 和 SNN 推断处理器为在无云依赖的能源紧张环境中进行商业低功率信号处理提供了一个良好的平台。然而,迄今为止,这些方法尚未为工业中ML工程师提供,需要研究生级培训才能成功配置单一 SNNN 应用程序。在这里,我们展示了设计、培训和部署任意时间信号处理应用程序的方便高级管道,以设计、培训和使用更便捷的 SNNNF 处理器。我们应用了一个新的直接的SNNNN,使用一个星际定时常数的金字塔,以在一系列时间尺度上提取信号特征。我们用低音频分类任务向 Xylo SNNNP 显示这种结构,在流线上应用SNNP 和低电路路段的S-98 的SNNV 常规应用中,在前的SNNNP 中可以进行高精度- 和高精度的S- 的SNNNDL 和高精度的S-crecrecreal的S-creal 的S-