The choices of hyperparameters have critical effects on the performance of machine learning models. In this paper, we present a general framework that is able to construct an adaptive optimizer, which automatically adjust the appropriate algorithm and parameters in the process of optimization. Examining the method of adaptive optimizer, we product an example of using genetic algorithm to construct an adaptive optimizer based on Bayesian Optimizer and compared effectiveness with original optimizer. Especially, It has great advantages in parallel optimization.
翻译:选择超参数对机器学习模型的性能具有关键影响。 在本文中,我们提出了一个能够构建适应性优化器的总体框架,该优化器自动调整优化过程中的适当算法和参数。研究适应性优化器的方法,我们制作了一个使用基因算法来构建适应性优化器的范例,该模型以巴耶斯最佳激励器为基础,并与原始优化器进行比较。特别是,它在平行优化方面有很大优势。