Many datasets are underspecified, which means there are several equally viable solutions for the data. Underspecified datasets can be problematic for methods that learn a single hypothesis because different functions that achieve low training loss can focus on different predictive features and thus have widely varying predictions on out-of-distribution data. We propose DivDis, a simple two-stage framework that first learns a diverse collection of hypotheses for a task by leveraging unlabeled data from the test distribution. We then disambiguate by selecting one of the discovered hypotheses using minimal additional supervision, in the form of additional labels or inspection of function visualization. We demonstrate the ability of DivDis to find hypotheses that use robust features in image classification and natural language processing problems with underspecification.
翻译:许多数据集都未详细说明,这意味着数据有几种同样可行的解决办法。在特定数据集下,对于学习单一假设的方法来说,学习单一假设的方法可能存在问题,因为实现低培训损失的不同功能可以侧重于不同的预测特征,从而对分布之外的数据作出广泛不同的预测。我们提议DivDis,这是一个简单的两阶段框架,首先通过利用测试分布中未加标签的数据,为一项任务学习多种假设的收集。然后,我们通过使用最低限度的额外监督,以额外标签或功能可视化检查的形式,选择一个发现的假说,进行脱节。我们证明DivDis有能力找到在图像分类中使用强健特征的假说,并发现自然语言处理问题的具体特性不足。