Many datasets are underspecified, which means there are several equally viable solutions for the data. Underspecified datasets can be problematic for methods that learn a single hypothesis because different functions that achieve low training loss can focus on different predictive features and thus have widely varying predictions on out-of-distribution data. We propose DivDis, a simple two-stage framework that first learns a diverse collection of hypotheses for a task by leveraging unlabeled data from the test distribution. We then disambiguate by selecting one of the discovered hypotheses using minimal additional supervision, in the form of additional labels or inspection of function visualization. We demonstrate the ability of DivDis to find hypotheses that use robust features in image classification and natural language processing problems with underspecification.


翻译:许多数据集都未详细说明,这意味着数据有几种同样可行的解决办法。在特定数据集下,对于学习单一假设的方法来说,学习单一假设的方法可能存在问题,因为实现低培训损失的不同功能可以侧重于不同的预测特征,从而对分布之外的数据作出广泛不同的预测。我们提议DivDis,这是一个简单的两阶段框架,首先通过利用测试分布中未加标签的数据,为一项任务学习多种假设的收集。然后,我们通过使用最低限度的额外监督,以额外标签或功能可视化检查的形式,选择一个发现的假说,进行脱节。我们证明DivDis有能力找到在图像分类中使用强健特征的假说,并发现自然语言处理问题的具体特性不足。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
126+阅读 · 2020年9月6日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Arxiv
126+阅读 · 2020年9月6日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员