Large language models (LMs) of code have recently shown tremendous promise in completing code and synthesizing code from natural language descriptions. However, the current state-of-the-art code LMs (e.g., Codex (Chen et al., 2021)) are not publicly available, leaving many questions about their model and data design decisions. We aim to fill in some of these blanks through a systematic evaluation of the largest existing models: Codex, GPT-J, GPT-Neo, GPT-NeoX-20B, and CodeParrot, across various programming languages. Although Codex itself is not open-source, we find that existing open-source models do achieve close results in some programming languages, although targeted mainly for natural language modeling. We further identify an important missing piece in the form of a large open-source model trained exclusively on a multi-lingual corpus of code. We release a new model, PolyCoder, with 2.7B parameters based on the GPT-2 architecture, which was trained on 249GB of code across 12 programming languages on a single machine. In the C programming language, PolyCoder outperforms all models including Codex. Our trained models are open-source and publicly available at https://github.com/VHellendoorn/Code-LMs, which enables future research and application in this area.
翻译:守则的大型语言模型(LMs)最近显示,在完成守则和综合自然语言描述的守则方面有巨大的希望,然而,目前最先进的守则LMs(例如,Codex(Chen等人,2021年))尚未公布,从而留下了有关其模式和数据设计决定的许多问题。我们的目标是通过系统评估现有最大的模型(Codx、GPT-J、GPT-Neo、GPT-NeoX-20B和CodParrot)填补其中的一些空白。虽然Codex本身不是开放源,但我们发现现有的开放源代码LMMs(例如,Codex等人,2021年)确实在某些编程语言中取得了接近的结果,尽管主要针对自然语言建模。我们进一步找出了一个重要的缺失部分,其形式是专门进行多种语言代码组合培训的大型开放源模型。我们发布了一个新的模型(PolyCder),其中2.7B参数基于GPT-2结构,该模型在12种编程语言的249GB编码中经过培训,在单一机器上是开放的,在Mex/Mex/Sendorex/Fefrodrodroformax进行。