Multi-agent reinforcement learning (MARL) has been gaining extensive attention from academia and industries in the past few decades. One of the fundamental problems in MARL is how to evaluate different approaches comprehensively. Most existing MARL methods are evaluated in either video games or simplistic simulated scenarios. It remains unknown how these methods perform in real-world scenarios, especially multi-robot systems. This paper introduces a scalable emulation platform for multi-robot reinforcement learning (MRRL) called SMART to meet this need. Precisely, SMART consists of two components: 1) a simulation environment that provides a variety of complex interaction scenarios for training and 2) a real-world multi-robot system for realistic performance evaluation. Besides, SMART offers agent-environment APIs that are plug-and-play for algorithm implementation. To illustrate the practicality of our platform, we conduct a case study on the cooperative driving lane change scenario. Building off the case study, we summarize several unique challenges of MRRL, which are rarely considered previously. Finally, we open-source the simulation environments, associated benchmark tasks, and state-of-the-art baselines to encourage and empower MRRL research.


翻译:在过去几十年中,学术界和行业广泛关注多剂加固学习(MARL)问题。MARL的根本问题之一是如何全面评价不同方法。大多数现有的MARL方法都是在电子游戏或简单模拟情景中加以评价的。这些方法在现实世界情景中是如何运作的,特别是多机器人系统。本文介绍了一个可扩缩的多机器人加固学习模拟平台(MRRL),称为SMART,以满足这一需要。确切地说,SMART由两个部分组成:1)一个模拟环境,为培训提供各种复杂的互动情景;2)一个现实世界多机器人系统,用于现实的绩效评估。此外,SMART提供代理环境动画,作为算法执行的插头和功能。为了说明我们的平台的实用性,我们进行了一项关于合作驱动器变换情景的案例研究。根据案例研究,我们总结了MRRL的几项独特挑战,而以前很少考虑过这些挑战。最后,我们公开介绍了模拟环境、相关基准任务和状态的基线,以鼓励和赋予MRRRRRL的研究能力。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月9日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员