项目名称: 超材料耦合吸收增强量子级联红外探测器研究
项目编号: No.61504135
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 无线电电子学、电信技术
项目作者: 翟慎强
作者单位: 中国科学院半导体研究所
项目金额: 20万元
中文摘要: 量子级联探测器(QCD)是借助纵光学声子能量台阶实现光激发电子单方向输运,完成光伏模式探测的新型红外器件,它具有无暗电流、低功耗、低噪声、高温工作等优势,同时能够借助成熟Ⅲ-Ⅴ族材料生长和器件工艺,是第三代红外焦平面器件有力候选者和竞争者。但QCD存在响应率低的不足,限制了其性能提高和实际应用。利用新型高效耦合结构增强光吸收,是克服这一不足的重要手段,具有重要意义。另一方面,超材料具有共振吸收增强和电场分量局域的特性,在用作耦合结构,增强光吸收方面具有天然优势,这为设计新型高效耦合结构提供了契机。本项目拟将超材料的独特性质应用于QCD耦合增强吸收,开展超材料理论设计和工艺制作研究,将超材料和探测器集成,通过共振耦合,将入射光近乎无反射的耦合进入探测器结构,通过电场局域增强和双面金属波导作用,将光场限制在探测器吸收区,极大增强光吸收,提高QCD响应率,研制高性能QCD器件。
中文关键词: 量子级联探测器;子带间跃迁;超材料;吸收增强;有限时域差分
英文摘要: Quantum Cascade Detector (QCD) is a new type of photovoltaic infrared detector, in which a carefully designed extraction cascade, which is adapted to the longitudinal optical (LO) phonon energy, leads to one-way direction electron transport and thus photovoltaic response. This working principle determines their advantages of low power consumption,low noise,and high operation temperature. In addition, with the aid of mature Ⅲ-Ⅴ material growth and device technology, QCDs share the advantage of material uniformity, reproducibility, and yield, over a large area. Thus QCDs are very promising candidates and competitors for the third generation FPA thermal imaging applications. Yet QCDs suffers from one shortcoming - low responsivity, which limits their performance improvement and practical application. Designing novel and high-efficiency coupling structure to enhance absorption is an important way to overcome this deficiency and of great significance. On the other hand, metamaterials allow for near-unity absorption and strong electric field enhancement in their vicinity, making them well suited to be used as novel and high-efficiency coupling structure and enhance light absorption. This provides a new idea to design high-efficiency coupling structure. This project will promote the theory design and device processing study on absorption enhancement of QCDs based on metamaterials. Near zero reflectivity of incident light and strong electric field enhancement in detector absorption area can be obtained due to metamaterials, which will greatly enhance light absorption and responsivity of QCDs and help to fabricate high performance QCDs.
英文关键词: quantum cascade detetctor;intersubband transition ;metamaterial;absorption enhancement;finite difference time domain