We consider the problem of sequentially optimizing a time-varying objective function using time-varying Bayesian optimization (TVBO). Here, the key challenge is to cope with old data. Current approaches to TVBO require prior knowledge of a constant rate of change. However, the rate of change is usually neither known nor constant. We propose an event-triggered algorithm, ET-GP-UCB, that detects changes in the objective function online. The event-trigger is based on probabilistic uniform error bounds used in Gaussian process regression. The trigger automatically detects when significant change in the objective functions occurs. The algorithm then adapts to the temporal change by resetting the accumulated dataset. We provide regret bounds for ET-GP-UCB and show in numerical experiments that it is competitive with state-of-the-art algorithms even though it requires no knowledge about the temporal changes. Further, ET-GP-UCB outperforms these competitive baselines if the rate of change is misspecified and we demonstrate that it is readily applicable to various settings without tuning hyperparameters.
翻译:我们考虑的是利用时间变化的巴伊西亚优化(TVBO)来按顺序优化时间变化目标函数的问题。 这里, 关键的挑战是如何应对旧数据。 目前对TVBO的处理方法要求事先知道一个不变的变动率。 但是,变化率通常既不为人所知,也不为常数。 我们提议一个事件触发算法, 即 ET- GP- UCB, 用来检测在线目标函数的变化。 事件触发器基于高斯亚进程回归中使用的概率性统一错误界限。 触发器自动检测目标函数发生重大变化时。 然后, 算法通过重新设置累积数据集来适应时间变化。 我们为 ET- GP- UCB 提供了遗憾界限, 并在数字实验中显示它与最新算法具有竞争力, 尽管它不需要对时间变化的了解。 此外, ET- GP- UCB 如果变化率被错误地描述, 并且我们证明它很容易适用于各种环境而不调整超分度。