Bayesian optimization (BO) is a popular method for efficiently inferring optima of an expensive black-box function via a sequence of queries. Existing information-theoretic BO procedures aim to make queries that most reduce the uncertainty about optima, where the uncertainty is captured by Shannon entropy. However, an optimal measure of uncertainty would, ideally, factor in how we intend to use the inferred quantity in some downstream procedure. In this paper, we instead consider a generalization of Shannon entropy from work in statistical decision theory (DeGroot 1962, Rao 1984), which contains a broad class of uncertainty measures parameterized by a problem-specific loss function corresponding to a downstream task. We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures such as knowledge gradient, expected improvement, and entropy search. We then show how alternative choices for the loss yield a flexible family of acquisition functions that can be customized for use in novel optimization settings. Additionally, we develop gradient-based methods to efficiently optimize our proposed family of acquisition functions, and demonstrate strong empirical performance on a diverse set of sequential decision making tasks, including variants of top-$k$ optimization, multi-level set estimation, and sequence search.
翻译:Bayesian优化(BO)是通过一系列查询有效推断昂贵黑盒功能的流行方法,通过一系列查询,对昂贵的黑盒功能进行精选。现有信息理论BO程序旨在查询,以便最能减少Popima的不确定性,而Popima的不确定性是由Shannon entropy所捕捉的。然而,最佳的不确定性度量,最好能考虑到我们打算如何在某些下游程序中使用所推断的数量。在本文中,我们相反地考虑将香农昆虫从统计决策理论(DeGroot 1962,Rao 1984)中的工作中概括起来,该理论包含一系列广泛的不确定性措施,其参数由与下游任务相对应的针对具体问题的损失函数作为参数。我们首先显示,这种英特质导致在BO程序中使用的民众获取功能的特殊案例,例如知识梯度、预期的改进和英特质搜索。我们然后表明,对于损失的替代选择将产生一种灵活的购置功能组合,这种功能可以按新的优化环境的定制使用。此外,我们开发基于梯度的方法,以便有效地优化我们提议的购置组功能,并展示在一系列不同的连续决策任务上,包括最高值的搜索序列的变式。