Graph contrastive learning (GCL), as an emerging self-supervised learning technique on graphs, aims to learn representations via instance discrimination. Its performance heavily relies on graph augmentation to reflect invariant patterns that are robust to small perturbations; yet it still remains unclear about what graph invariance GCL should capture. Recent studies mainly perform topology augmentations in a uniformly random manner in the spatial domain, ignoring its influence on the intrinsic structural properties embedded in the spectral domain. In this work, we aim to find a principled way for topology augmentations by exploring the invariance of graphs from the spectral perspective. We develop spectral augmentation which guides topology augmentations by maximizing the spectral change. Extensive experiments on both graph and node classification tasks demonstrate the effectiveness of our method in self-supervised representation learning. The proposed method also brings promising generalization capability in transfer learning, and is equipped with intriguing robustness property under adversarial attacks. Our study sheds light on a general principle for graph topology augmentation.
翻译:图表对比式学习(GCL)是一个新兴的自我监督的图形学习技术,目的是通过实例歧视来学习表征。它的性能在很大程度上依赖图形增强来反映对小扰动具有活力的变异模式;然而,对于哪些图表变化性GCL应该捕捉到的图案,仍然不清楚。最近的研究主要以统一随机的方式在空间领域进行地形增强,忽视其对光谱域内在结构属性的影响。在这项工作中,我们的目标是通过探索光谱角度的图表的变异性来寻找一种有原则的地形增强方法。我们开发光谱增强法,通过最大限度地扩大光谱变化来指导表层增强。在图形和节点分类任务上进行的广泛实验显示了我们方法在自我监督的代表学习方面的有效性。拟议方法还带来了有希望的普及能力,在对抗性攻击下还具备了令人感兴趣的强性强性属性。我们的研究为图表增长的一般原则提供了启发。