The growing exploitation of Machine Learning (ML) in safety-critical applications necessitates rigorous safety analysis. Hardware reliability assessment is a major concern with respect to measuring the level of safety in ML-based systems. Quantifying the reliability of emerging ML models, including Convolutional Neural Networks (CNNs), is highly complex due to their enormous size in terms of the number of parameters and computations. Conventionally, Fault Injection (FI) is applied to perform a reliability measurement. However, performing FI on modern-day CNNs is prohibitively time-consuming if an acceptable confidence level is to be achieved. To speed up FI for large CNNs, statistical FI (SFI) has been proposed, but its runtimes are still considerably long. In this work, we introduce DeepVigor+, a scalable, fast, and accurate semi-analytical method as an efficient alternative for reliability measurement in CNNs. DeepVigor+ implements a fault propagation analysis model and attempts to acquire Vulnerability Factors (VFs) as reliability metrics in an optimal way. The results indicate that DeepVigor+ obtains VFs for CNN models with an error less than $1\%$, i.e., the objective in SFI, but with $14.9$ up to $26.9$ times fewer simulations than the best-known state-of-the-art SFI. DeepVigor+ enables an accurate reliability analysis for large and deep CNNs within a few minutes, rather than achieving the same results in days or weeks.
翻译:暂无翻译