For its robust predictive power (compared to pure physics-based models) and sample-efficient training (compared to pure deep learning models), physics-informed deep learning (PIDL), a paradigm hybridizing physics-based models and deep neural networks (DNN), has been booming in science and engineering fields. One key challenge of applying PIDL to various domains and problems lies in the design of a computational graph that integrates physics and DNNs. In other words, how physics are encoded into DNNs and how the physics and data components are represented. In this paper, we provide a variety of architecture designs of PIDL computational graphs and how these structures are customized to traffic state estimation (TSE), a central problem in transportation engineering. When observation data, problem type, and goal vary, we demonstrate potential architectures of PIDL computational graphs and compare these variants using the same real-world dataset.
翻译:对于其强大的预测力(与纯物理模型相比)和抽样高效培训(与纯深层学习模型相比),物理学知情深层学习(PIDL)是物理学模型和深神经网络混合的范式,在科学和工程领域一直蓬勃发展。将PIDL应用于各个领域和问题的一个关键挑战在于如何设计一个将物理和DNN整合在一起的计算图。换句话说,如何将物理学编码为DNS,以及物理和数据组成部分的表述方式。在本文件中,我们提供了PIDL计算图的各种结构设计,以及这些结构如何适应交通状态估计(TSE),这是运输工程的一个中心问题。当观测数据、问题类型和目标各不相同时,我们展示了PIDL计算图的潜在结构,并利用相同的真实世界数据集对这些变量进行比较。</s>