Large scale pretrained language models have demonstrated state-of-the-art performance in language understanding tasks. Their application has recently expanded into multimodality learning, leading to improved representations combining vision and language. However, progress in adapting language models towards conditional Natural Language Generation (NLG) has been limited to a single modality, generally text. We propose MAnTiS, Multimodal Adaptation for Text Synthesis, a general approach for multimodal conditionality in transformer-based NLG models. In this method, we pass inputs from each modality through modality-specific encoders, project to textual token space, and finally join to form a conditionality prefix. We fine-tune the pretrained language model and encoders with the conditionality prefix guiding the generation. We apply MAnTiS to the task of product description generation, conditioning a network on both product images and titles to generate descriptive text. We demonstrate that MAnTiS outperforms strong baseline approaches on standard NLG scoring metrics. Furthermore, qualitative assessments demonstrate that MAnTiS can generate human quality descriptions consistent with given multimodal inputs.


翻译:受过培训的大规模语言模式在语言理解任务方面表现出了最先进的表现,其应用最近已扩大到多式学习,从而改善了视觉和语言的组合,然而,在将语言模式调整为有条件的自然语言生成(NLG)方面,进展仅限于单一模式,一般为文本。我们建议采用MANTiS, 文本合成的多式适应,这是基于变压器的NLG模型中多式联运附加条件的一般办法。在这种方法中,我们通过特定模式的编码器,项目到文本象征性空间,从每种模式中传递投入,并最终形成一个附加条件的前缀。我们把预先培训的语言模式和编码与指导这一代人的条件前缀进行微调。我们应用MANTIS来完成产品描述生成的任务,为产品图像和标题的网络设置条件,以生成描述性文本。我们证明,MANTIS在标准NLG评分指标上超越了强有力的基线方法。此外,定性评估表明,MAnTiS能够产生与给定的多式联运投入一致的人类质量描述。

1
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员