Recent research has shown remarkable success in revealing "steering" directions in the latent spaces of pre-trained GANs. These directions correspond to semantically meaningful image transformations e.g., shift, zoom, color manipulations), and have similar interpretable effects across all categories that the GAN can generate. Some methods focus on user-specified transformations, while others discover transformations in an unsupervised manner. However, all existing techniques rely on an optimization procedure to expose those directions, and offer no control over the degree of allowed interaction between different transformations. In this paper, we show that "steering" trajectories can be computed in closed form directly from the generator's weights without any form of training or optimization. This applies to user-prescribed geometric transformations, as well as to unsupervised discovery of more complex effects. Our approach allows determining both linear and nonlinear trajectories, and has many advantages over previous methods. In particular, we can control whether one transformation is allowed to come on the expense of another (e.g. zoom-in with or without allowing translation to keep the object centered). Moreover, we can determine the natural end-point of the trajectory, which corresponds to the largest extent to which a transformation can be applied without incurring degradation. Finally, we show how transferring attributes between images can be achieved without optimization, even across different categories.
翻译:最近的研究显示,在预先训练过的GAN的潜空中,在揭示“示意图”方向方面取得了显著成功。 这些方向与具有内涵意义的图像转换相对应, 例如, 转换、 缩放、 色彩操控等, 并在GAN能够生成的所有类别中具有类似的可解释效果。 有些方法侧重于用户指定的变换, 而另一些方法则以不受监督的方式发现变换。 然而, 所有现有技术都依赖于优化程序来暴露这些方向, 并且无法控制不同变换之间允许的相互作用程度。 在本文中, 我们显示“ 示意图” 轨迹可以直接从生成器的重量中以封闭的形式计算, 而没有任何形式的培训或优化。 这适用于用户指定的几何变换, 以及不受监督地发现更复杂的效果。 我们的方法可以确定线性和非线性变换轨迹, 并且比以前的方法有许多优势。 特别是, 我们能够控制是否允许一种变换换为另一种( 例如: 缩图象与或不允许以封闭的形式直接方式计算出 ), 能够不以任何形态的变换成任何物体的变形, 最终显示我们所选择的变形到的变变形到最大的变形。