Detecting occluded objects still remains a challenge for state-of-the-art object detectors. The objective of this work is to improve the detection for such objects, and thereby improve the overall performance of a modern object detector. To this end we make the following four contributions: (1) We propose a simple 'plugin' module for the detection head of two-stage object detectors to improve the recall of partially occluded objects. The module predicts a tri-layer of segmentation masks for the target object, the occluder and the occludee, and by doing so is able to better predict the mask of the target object. (2) We propose a scalable pipeline for generating training data for the module by using amodal completion of existing object detection and instance segmentation training datasets to establish occlusion relationships. (3) We also establish a COCO evaluation dataset to measure the recall performance of partially occluded and separated objects. (4) We show that the plugin module inserted into a two-stage detector can boost the performance significantly, by only fine-tuning the detection head, and with additional improvements if the entire architecture is fine-tuned. COCO results are reported for Mask R-CNN with Swin-T or Swin-S backbones, and Cascade Mask R-CNN with a Swin-B backbone.


翻译:检测隐蔽物体仍然是对最先进的天体探测器的挑战,这项工作的目标是改进对此类物体的探测,从而改进现代天体探测器的总体性能。为此目的,我们提出以下四个贡献:(1) 我们提议一个简单的“插件”模块,用于检测两阶段天体探测器头的检测,以改进部分隐蔽物体的回溯。模块预测目标物体、橡皮条和隐蔽物体的分解面罩的三层,通过这样做能够更好地预测目标物体的遮罩。 (2) 我们提议一个可扩缩的管道,通过对现有天体探测和实例分解培训数据集的现代完成来生成模块的培训数据,以建立隔离关系。(3) 我们还建立一个COCO评价数据集,以测量部分隐蔽和分离物体的回溯性能。 (4) 我们表明,插入在两阶段探测器的插件模块能够大大地提高性能,只需微调CN检测头,并且如果整个建筑是S-N的S-C-S-S-S-S-S-S-S-S-S-S-MS-S-S-S-S-S-S-S-S-S-S-Syc-S-S-S-S-Syc-Sy-Sy-S-S-S-S-S-S-S-Sy-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S--S-S-S-S-

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月25日
Arxiv
0+阅读 · 2022年11月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员