The Procrustes-based perturbation model (Goodall, 1991) allows minimization of the Frobenius distance between matrices by similarity transformation. However, it suffers from non-identifiability, critical interpretation of the transformed matrices, and inapplicability in high-dimensional data. We provide an extension of the perturbation model focused on the high-dimensional data framework, called the ProMises (Procrustes von Mises-Fisher) model. The ill-posed and interpretability problems are solved by imposing a proper prior distribution for the orthogonal matrix parameter (i.e., the von Mises-Fisher distribution) which is a conjugate prior, resulting in a fast estimation process. Furthermore, we present the Efficient ProMises model for the high-dimensional framework, useful in neuroimaging, where the problem has much more than three dimensions. We found a great improvement in functional magnetic resonance imaging (fMRI) connectivity analysis because the ProMises model permits incorporation of topological brain information in the alignment's estimation process.
翻译:以紫外线为基础的扰动模型(Goodall,1991年)允许通过相似性变异尽量减少基质之间Frobenius的距离;然而,它受到不可辨识性、对变形矩阵的批判性解释以及高维数据不适用的制约模型的延伸;我们提供了以高维数据框架为焦点的、称为Procrustes (Procrustes von Mises-Fisher) 模型的扰动模型的延伸;错误和可解释性问题通过对正方位矩阵参数(即 von Mises-Fisher分布)进行适当的事先分配来解决,该参数是先行的同质,导致快速估算过程;此外,我们介绍了高维框架的高效Promises模型,在神经构造方面有用,这里的问题超过三个层面;我们发现功能磁共振动成像(fMRI)连通性分析有很大改进,因为Promises模型允许将表层脑信息纳入校准的估算过程。