Single-image human relighting aims to relight a target human under new lighting conditions by decomposing the input image into albedo, shape and lighting. Although plausible relighting results can be achieved, previous methods suffer from both the entanglement between albedo and lighting and the lack of hard shadows, which significantly decrease the realism. To tackle these two problems, we propose a geometry-aware single-image human relighting framework that leverages single-image geometry reconstruction for joint deployment of traditional graphics rendering and neural rendering techniques. For the de-lighting, we explore the shortcomings of UNet architecture and propose a modified HRNet, achieving better disentanglement between albedo and lighting. For the relighting, we introduce a ray tracing-based per-pixel lighting representation that explicitly models high-frequency shadows and propose a learning-based shading refinement module to restore realistic shadows (including hard cast shadows) from the ray-traced shading maps. Our framework is able to generate photo-realistic high-frequency shadows such as cast shadows under challenging lighting conditions. Extensive experiments demonstrate that our proposed method outperforms previous methods on both synthetic and real images.
翻译:人类单一图像光照的目的是通过将输入图像分解成反照、形状和照明,在新的照明条件下点亮目标人类,将输入图像分解成反光、形状和照明。虽然可以取得令人看似令人振奋的结果,但以往的方法既受到反光和照明之间的纠缠,又受到缺乏硬阴影的困扰,这大大削弱了现实主义。为了解决这两个问题,我们提议了一个以几何学为特征的单一图像人类光照框架,利用单一图像几何重建,联合部署传统图像投影和神经投影技术。关于淡光,我们探索了UNet结构的缺点,并提议了一个经过修改的HRNet,在反光和照明之间实现更好的分解。关于光照,我们采用了一个基于光谱的全像光的追踪光代表,明确模拟高频阴影,并提议一个基于学习的阴影化改进模块,以恢复从光谱阴影和神经投影图中恢复现实的阴影(包括硬影影)。我们的框架能够产生光光光学高频阴影,作为真实的影,在具有挑战性光光学性图像条件下展示的方法展示。我们之前的模拟的图像。