We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm. Here, given access to a matrix $A$ through matrix-vector products, an accuracy parameter $\epsilon$, and a target rank $k$, the goal is to find a rank-$k$ matrix $Z$ with orthonormal columns such that $\| A(I -ZZ^\top)\|_{S_p} \leq (1+\epsilon)\min_{U^\top U = I_k} \|A(I - U U^\top)\|_{S_p}$, where $\|M\|_{S_p}$ denotes the $\ell_p$ norm of the the singular values of $M$. For the special cases of $p=2$ (Frobenius norm) and $p = \infty$ (Spectral norm), Musco and Musco (NeurIPS 2015) obtained an algorithm based on Krylov methods that uses $\tilde{O}(k/\sqrt{\epsilon})$ matrix-vector products, improving on the na\"ive $\tilde{O}(k/\epsilon)$ dependence obtainable by the power method, where $\tilde{O}$ suppresses poly$(\log(dk/\epsilon))$ factors. Our main result is an algorithm that uses only $\tilde{O}(kp^{1/6}/\epsilon^{1/3})$ matrix-vector products, and works for all $p \geq 1$. For $p = 2$ our bound improves the previous $\tilde{O}(k/\epsilon^{1/2})$ bound to $\tilde{O}(k/\epsilon^{1/3})$. Since the Schatten-$p$ and Schatten-$\infty$ norms are the same up to a $(1+ \epsilon)$-factor when $p \geq (\log d)/\epsilon$, our bound recovers the result of Musco and Musco for $p = \infty$. Further, we prove a matrix-vector query lower bound of $\Omega(1/\epsilon^{1/3})$ for any fixed constant $p \geq 1$, showing that surprisingly $\tilde{\Theta}(1/\epsilon^{1/3})$ is the optimal complexity for constant~$k$. To obtain our results, we introduce several new techniques, including optimizing over multiple Krylov subspaces simultaneously, and pinching inequalities for partitioned operators. Our lower bound for $p \in [1,2]$ uses the Araki-Lieb-Thirring trace inequality, whereas for $p>2$, we appeal to a norm-compression inequality for aligned partitioned operators.
翻译:我们研究基于 Krylov 亚空基的迭代方法, 在任何标准值下, 以 Krylov 亚空基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基基底基底基基底基基底基基基基底基基基底基基基基基基基基基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基基基底基底基底基基底基底基基基基基基基基基基基基基基基基基基基基基基底基底基底基底基底基底基底基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基底基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基底基基基基基基