We develop heuristic interpolation methods for the functions $t \mapsto \log \det \left( \mathbf{A} + t \mathbf{B} \right)$ and $t \mapsto \operatorname{trace}\left( (\mathbf{A} + t \mathbf{B})^{p} \right)$ where the matrices $\mathbf{A}$ and $\mathbf{B}$ are Hermitian and positive (semi) definite and $p$ and $t$ are real variables. These functions are featured in many applications in statistics, machine learning, and computational physics. The presented interpolation functions are based on the modification of sharp bounds for these functions. We demonstrate the accuracy and performance of the proposed method with numerical examples, namely, the marginal maximum likelihood estimation for Gaussian process regression and the estimation of the regularization parameter of ridge regression with the generalized cross-validation method.
翻译:我们为 $t \ maspsto \ masbf{A} + t\ mathbf{B}\right 和 $t\mapsto\operatorname{trace{trace{left (((mathbf{A} + t\mathbf{B}}}}\ p}\right) 函数开发了超值内推法方法,其中基质 $\ mathbf{A} $ 和 $\ mathbf{B}$ 是 Hermitian 和正值(semi) 和 $p$ 和 $t$ 是真实变量。 这些函数在统计、机器学习和计算物理的许多应用中都有特征。 提出的内推法功能是以这些函数的锐性界限修改为基础的。 我们用数字示例来展示了拟议方法的准确性和性, 即高斯进程回归的最小最大可能性估计, 以及以普遍交叉校准法估算脊回归的正规参数。