A standard pipeline of current face recognition frameworks consists of four individual steps: locating a face with a rough bounding box and several fiducial landmarks, aligning the face image using a pre-defined template, extracting representations and comparing. Among them, face detection, landmark detection and representation learning have long been studied and a lot of works have been proposed. As an essential step with a significant impact on recognition performance, the alignment step has attracted little attention. In this paper, we first explore and highlight the effects of different alignment templates on face recognition. Then, for the first time, we try to search for the optimal template automatically. We construct a well-defined searching space by decomposing the template searching into the crop size and vertical shift, and propose an efficient method Face Alignment Policy Search (FAPS). Besides, a well-designed benchmark is proposed to evaluate the searched policy. Experiments on our proposed benchmark validate the effectiveness of our method to improve face recognition performance.
翻译:由当前面貌识别框架构成的标准管道由四个单个步骤组成:用一个粗糙的框框和几个标志性标志定位一个脸孔,使用预先定义的模板对脸部图像进行匹配,提取图示和比较。其中,对面部检测、标志性检测和代表性学习进行了长期研究,并提出了大量工作建议。作为对识别业绩产生重大影响的重要一步,调整步骤很少引起注意。在本文件中,我们首先探索并突出不同校准模板对面部识别的影响。然后,我们第一次尝试自动搜索最佳模板。我们通过将搜索的模板分解成作物大小和垂直转移,构建一个定义明确的搜索空间,并提出高效方法“面部协调政策搜索 ” ( FAPS) 。此外,还提出了一个设计良好的基准来评价搜索的政策。我们拟议基准的实验验证了我们改进面部识别绩效的方法的有效性。