The mean shift (MS) algorithm is a nonparametric method used to cluster sample points and find the local modes of kernel density estimates, using an idea based on iterative gradient ascent. In this paper we develop a mean-shift-inspired algorithm to estimate the modes of regression functions and partition the sample points in the input space. We prove convergence of the sequences generated by the algorithm and derive the non-asymptotic rates of convergence of the estimated local modes for the underlying regression model. We also demonstrate the utility of the algorithm for data-enabled discovery through an application on biomolecular structure data. An extension to subspace constrained mean shift (SCMS) algorithm used to extract ridges of regression functions is briefly discussed.
翻译:中值转换算法是一种非参数性方法,用于集聚样本点并找到本地内核密度估计模式,使用基于迭代梯度上升的理念。 在本文中,我们开发了一种中值临时启发算法,用于估计回归函数模式和分离输入空间中的样本点。我们证明算法产生的序列是趋同的,并得出了基础回归模型中估计的本地模式的非零反应趋同率。我们还展示了通过生物分子结构数据应用进行数据辅助发现算法的效用。简要讨论了用于提取回归函数边缘的子空间限制中值转移算法的延伸。