We consider the problem of spatially dependent areal data, where for each area independent observations are available, and propose to model the density of each area through a finite mixture of Gaussian distributions. The spatial dependence is introduced via a novel joint distribution for a collection of vectors in the simplex, that we term logisticMCAR. We show that salient features of the logisticMCAR distribution can be described analytically, and that a suitable augmentation scheme based on the P\'olya-Gamma identity allows to derive an efficient Markov Chain Monte Carlo algorithm. When compared to competitors, our model has proved to better estimate densities in different (disconnected) areal locations when they have different characteristics. We discuss an application on a real dataset of Airbnb listings in the city of Amsterdam, also showing how to easily incorporate for additional covariate information in the model.
翻译:我们考虑了空间依赖性数据的问题,每个区域都有独立的观测,我们建议通过高山分布的有限混合体来模拟每个区域的密度。空间依赖性是通过以简单x形式收集矢量的新颖联合分布方式引入的,我们使用后勤MCAR。我们显示,物流MCAR分布的显著特征可以用分析方式描述,基于P\'olya-Gamma身份的适当的增强计划可以产生高效的Markov链条蒙特卡洛算法。与竞争者相比,我们的模型证明在不同的(不相连)不同性质的情况下,可以更好地估计不同(不相联)不同(相联)的荒漠地点的密度。我们讨论了阿姆斯特丹市Airbnb 列表中真实数据集的应用,还展示了如何方便地将更多的共变信息纳入模型。