This article introduces a representation of dynamic meshes, adapted to some numerical simulations that require controlling the volume of objects with free boundaries, such as incompressible fluid simulation, some astrophysical simulations at cosmological scale, and shape/topology optimization. The algorithm decomposes the simulated object into a set of convex cells called a Laguerre diagram, parameterized by the position of $N$ points in 3D and $N$ additional parameters that control the volumes of the cells. These parameters are found as the (unique) solution of a convex optimization problem -- semi-discrete Monge-Amp\`ere equation -- stemming from optimal transport theory. In this article, this setting is extended to objects with free boundaries and arbitrary topology, evolving in a domain of arbitrary shape, by solving a partial optimal transport problem. The resulting Lagrangian scheme makes it possible to accurately control the volume of the object, while precisely tracking interfaces, interactions, collisions, and topology changes.
翻译:本条引入了动态模贝的表示, 并适应了某些需要控制具有自由边界的物体体积的数值模拟, 如不压缩液体模拟、 某些宇宙尺度的天体物理模拟、 形状/ 地形优化。 算法将模拟物体分解成一组叫做 Laguerre 图的二次曲线细胞, 以3D 中 $ 点的方位和 3D 中 3D 中 美元 的附加值参数为参数参数。 这些参数是来自最佳运输理论的二次曲线优化( unique) 优化问题 -- -- 半分解的 Monge- Amp ⁇ ere 等方程式。 在本条中, 设置扩展至具有自由边界和任意地形的物体, 在任意形状范围内发展, 解决部分最佳运输问题 。 由此产生的拉格朗加计划使得能够准确控制物体体积, 同时精确跟踪界面、 、 互动 、 碰撞 和 地形变化 。