Medical image segmentation is crucial for clinical diagnosis and treatment planning, particularly for complex anatomical structures like vessels. In this work, we propose VesselSAM, a modified version of the Segmentation Anything Model (SAM), specifically designed for aortic vessel segmentation. VesselSAM incorporates AtrousLoRA, a novel module that combines Atrous Attention with Low-Rank Adaptation (LoRA), to improve segmentation performance. Atrous Attention enables the model to capture multi-scale contextual information, preserving both fine local details and broader global context. At the same time, LoRA facilitates efficient fine-tuning of the frozen SAM image encoder, reducing the number of trainable parameters and ensuring computational efficiency. We evaluate VesselSAM on two challenging datasets: the Aortic Vessel Tree (AVT) dataset and the Type-B Aortic Dissection (TBAD) dataset. VesselSAM achieves state-of-the-art performance with DSC scores of 93.50\%, 93.25\%, 93.02\%, and 93.26\% across multiple medical centers. Our results demonstrate that VesselSAM delivers high segmentation accuracy while significantly reducing computational overhead compared to existing large-scale models. This development paves the way for enhanced AI-based aortic vessel segmentation in clinical environments. The code and models will be released at https://github.com/Adnan-CAS/AtrousLora.
翻译:暂无翻译