We study a variant of the subgraph isomorphism problem that is of high interest to the quantum computing community. Our results give an algorithm to perform pattern matching in quantum circuits for many patterns simultaneously, independently of the number of patterns. After a pre-computation step in which the patterns are compiled into a decision tree, the running time is linear in the size of the input quantum circuit. More generally, we consider connected port graphs, in which every edge $e$ incident to $v$ has a label $L_v(e)$ unique in $v$. Jiang and Bunke showed that the subgraph isomorphism problem $H \subseteq G$ for such graphs can be solved in time $O(|V(G)| \cdot |V(H)|)$. We show that if in addition the graphs are directed acyclic, then the subgraph isomorphism problem can be solved for an unbounded number of patterns simultaneously. We enumerate all $m$ pattern matches in time $O(P)^{P+3/2} \cdot |V(G)| + O(m)$, where $P$ is the number of vertices of the largest pattern. In the case of quantum circuits, we can express the bound obtained in terms of the maximum number of qubits $N$ and depth $\delta$ of the patterns : $O(N)^{N + 1/2} \cdot \delta \log \delta \cdot |V(G)| + O(m)$.


翻译:我们研究子图的变体是量子计算界非常感兴趣的子形问题。 我们的结果提供了一种算法, 使量子电路的图案与许多图案同时匹配, 而不考虑图案的数量。 在将图案编入决策树的预计算步骤之后, 运行时间是输入量子电路大小的线性。 更一般地, 我们考虑连接的端口图, 每一个偏差美元到 $v, 都有一个以美元计算的标签 $_ v( e) 。 江和邦克显示, 此类图的量子形体问题 $H\ subseteqeq G$ 可以用时间解决 $( +V) {( G)\\ {c) =美元。 我们显示, 如果在图案外加电路图中, 那么子系统问题可以同时解决一个未标定的图案数量。 我们用时间将所有美元模式匹配 $( P+3}\ cdoeqeqeqe g$, 最大O==xxxx.

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Unrolled Graph Learning for Multi-Agent Collaboration
Arxiv
0+阅读 · 2023年3月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员