We propose PD-GAN, a probabilistic diverse GAN for image inpainting. Given an input image with arbitrary hole regions, PD-GAN produces multiple inpainting results with diverse and visually realistic content. Our PD-GAN is built upon a vanilla GAN which generates images based on random noise. During image generation, we modulate deep features of input random noise from coarse-to-fine by injecting an initially restored image and the hole regions in multiple scales. We argue that during hole filling, the pixels near the hole boundary should be more deterministic (i.e., with higher probability trusting the context and initially restored image to create natural inpainting boundary), while those pixels lie in the center of the hole should enjoy more degrees of freedom (i.e., more likely to depend on the random noise for enhancing diversity). To this end, we propose spatially probabilistic diversity normalization (SPDNorm) inside the modulation to model the probability of generating a pixel conditioned on the context information. SPDNorm dynamically balances the realism and diversity inside the hole region, making the generated content more diverse towards the hole center and resemble neighboring image content more towards the hole boundary. Meanwhile, we propose a perceptual diversity loss to further empower PD-GAN for diverse content generation. Experiments on benchmark datasets including CelebA-HQ, Places2 and Paris Street View indicate that PD-GAN is effective for diverse and visually realistic image restoration.


翻译:我们建议 PD- GAN, 这是用于图像绘制的概率多样的 GAN 。 根据任意空洞区域的输入图像, PD- GAN 产生多幅绘制结果, 内容多样且视觉现实。 我们的 PD- GAN 建在香草GAN 上, 以随机噪音为基础生成图像。 在图像生成过程中, 我们通过在多个尺度中注入初始恢复的图像和空洞区域来调节输入粗略随机噪音的深度特征。 我们主张, 在填洞时, 洞边界附近的像素多样性应该更具确定性( 即, 以更现实的概率信任环境, 并初步恢复图像以创建自然的油漆边界) 。 我们的PDNord- GAN 建在洞中心里应该享有更多自由度( 即, 更可能依赖随机噪音来增强多样性 ) 。 为此, 我们提议, 在填充洞时, 将空间稳定性的多样性正常化正常化( SPDNorm) 进行模拟, 以模拟在背景信息上生成像质条件的概率( ) (即: 现实概率信任环境- 环境- Normal- dal- dal- dreal- destal- cal- dal- dreal- drealal ) 显示一个更接近的图像中, 我们提议了真实的图像中的数据- creal- creal- creal- creal- cal- cal- cal- creal- creal- creal- creal- creal- dreal- dreal- dal- dal- dal- dal- dal- dal- dreal- deal- dal- deal- deal- dal- dal- dal- dal- deal- dal- deal- deal- deal- dal- deal- deal- lementalalalal- dal- 和realdalalal- dal- dalal- dal- 和real- dal- dal- dal- dal- dal- dal- dal- dal- dal- dal- dal- dal- dal- dal- dal- dal- disal-

1
下载
关闭预览

相关内容

图像修复(英语:Inpainting)指重建的图像和视频中丢失或损坏的部分的过程。例如在博物馆中,这项工作常由经验丰富的博物馆管理员或者艺术品修复师来进行。数码世界中,图像修复又称图像插值或视频插值,指利用复杂的算法来替换已丢失、损坏的图像数据,主要替换一些小区域和瑕疵。
专知会员服务
47+阅读 · 2021年4月24日
生成对抗网络GAN在各领域应用研究进展(中文版),37页pdf
专知会员服务
150+阅读 · 2020年12月30日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
107+阅读 · 2020年5月21日
专知会员服务
61+阅读 · 2020年3月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Pluralistic Image Completion
Arxiv
8+阅读 · 2019年3月11日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
Top
微信扫码咨询专知VIP会员