Most existing few-shot learning (FSL) methods require a large amount of labeled data in meta-training, which is a major limit. To reduce the requirement of labels, a semi-supervised meta-training setting has been proposed for FSL, which includes only a few labeled samples and numbers of unlabeled samples in base classes. However, existing methods under this setting require class-aware sample selection from the unlabeled set, which violates the assumption of unlabeled set. In this paper, we propose a practical semi-supervised meta-training setting with truly unlabeled data. Under the new setting, the performance of existing methods drops notably. To better utilize both the labeled and truly unlabeled data, we propose a simple and effective meta-training framework, called pseudo-labeling based on meta-learning (PLML). Firstly, we train a classifier via common semi-supervised learning (SSL) and use it to obtain the pseudo-labels of unlabeled data. Then we build few-shot tasks from labeled and pseudo-labeled data and run meta-learning over the constructed tasks to learn the FSL model. Surprisingly, through extensive experiments across two FSL datasets, we find that this simple meta-training framework effectively prevents the performance degradation of FSL under limited labeled data. Besides, benefiting from meta-training, the proposed method improves the classifiers learned by two representative SSL algorithms as well.


翻译:多数现有的少许学习方法(FSL)要求大量在元培训中提供标签数据,这是一个重要的限制。为了减少标签要求,已经为FSL提议了一个半监督的元培训设置,其中仅包括少数标签样本和基类中未贴标签样本的数量。然而,在这种设置下的现有方法要求从未贴标签的数据集中选择类意识样本,这违反了未贴标签数据集的假设。在本文中,我们建议用真正未贴标签的数据建立一个实用的半监督的元培训设置。在新的设置下,现有方法的性能明显下降。为了更好地利用标签和真正未贴标签的数据,我们提议了一个简单有效的元培训框架,称为基于元学习(PLML)的假标签。首先,我们通过共同的半监督学习集成样本(SSL)来培训一个分类,用它来获取未贴标签数据的假标签。然后,我们从标签和假标签数据中建立少发的任务,然后在新设置的模板中进行代行的元学习。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年4月12日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
13+阅读 · 2019年1月26日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员