Computer aided diagnosis (CAD) increases diagnosis efficiency, helping doctors providing a quick and confident diagnosis, it has played an important role in the treatment of COVID19. In our task, we solve the problem about abnormality detection and classification. The dataset provided by Kaggle platform and we choose YOLOv5 as our model. We introduce some methods on objective detection in the related work section, the objection detection can be divided into two streams: onestage and two stage. The representational model are Faster RCNN and YOLO series. Then we describe the YOLOv5 model in the detail. Compared Experiments and results are shown in section IV. We choose mean average precision (mAP) as our experiments' metrics, and the higher (mean) mAP is, the better result the model will gain. mAP@0.5 of our YOLOv5s is 0.623 which is 0.157 and 0.101 higher than Faster RCNN and EfficientDet respectively.
翻译:计算机辅助诊断(CAD)提高了诊断效率,帮助医生提供快速而自信的诊断。 在我们的任务中,它在治疗COVID19的过程中发挥了重要作用。 我们解决了异常检测和分类的问题。 Kaggle平台提供的数据集,我们选择了YOLOv5为我们的模型。 我们在相关工作部分引入了一些客观检测方法,反对检测可以分为两个阶段:一个阶段和两个阶段。 代表模型是更快的RCNNN和YOLO系列。 然后我们详细描述YOLOv5模型。 比较实验和结果在第四节中显示。 我们选择平均精确度( mAP)作为我们的实验的尺度, 而更高的( 平均) mAP是, 模型将获得的更好结果。 我们的YOLOv5s的 mAP@0.5是0.623, 分别比更快的RCNN和高效的Det分别高出0.77和0.101。