In the submodular ranking (SR) problem, the input consists of a set of submodular functions defined on a ground set of elements. The goal is to order elements for all the functions to have value above a certain threshold as soon on average as possible, assuming we choose one element per time. The problem is flexible enough to capture various applications in machine learning, including decision trees. This paper considers the min-max version of SR where multiple instances share the ground set. With the view of each instance being associated with an agent, the min-max problem is to order the common elements to minimize the maximum objective of all agents -- thus, finding a fair solution for all agents. We give approximation algorithms for this problem and demonstrate their effectiveness in the application of finding a decision tree for multiple agents.


翻译:在次模排序(SR)问题中,输入是由定义在元素总集上的一组次模函数组成。目标是为了使所有函数的值都在一个特定的阈值以上能够尽快地平均排列元素,假设我们每次选择一个元素。该问题足够灵活以涵盖机器学习中的各种应用,包括决策树。本文考虑SR的极小-极大版本,在该版本中,多个实例共享总集。将每个实例视为一个智能体,极小-极大问题就是为了对公共元素进行排序,以使所有智能体的最大目标最小 - 因此,为所有智能体寻找公平的解决方案。我们为此问题提供了近似算法,并在多个智能体寻找决策树的应用中证明了其有效性。

0
下载
关闭预览

相关内容

智能体,顾名思义,就是具有智能的实体,英文名是Agent。
【ICDM2022教程】多目标优化与推荐,173页ppt
专知会员服务
44+阅读 · 2022年12月24日
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
【2022新书】强化学习工业应用,408页pdf
专知会员服务
226+阅读 · 2022年2月3日
【NeurIPS 2021】设置多智能体策略梯度的方差
专知会员服务
20+阅读 · 2021年10月24日
专知会员服务
16+阅读 · 2020年12月4日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月15日
VIP会员
相关VIP内容
【ICDM2022教程】多目标优化与推荐,173页ppt
专知会员服务
44+阅读 · 2022年12月24日
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
【2022新书】强化学习工业应用,408页pdf
专知会员服务
226+阅读 · 2022年2月3日
【NeurIPS 2021】设置多智能体策略梯度的方差
专知会员服务
20+阅读 · 2021年10月24日
专知会员服务
16+阅读 · 2020年12月4日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员