Partial differential equations (PDEs) fitting scientific data can represent physical laws with explainable mechanisms for various mathematically-oriented subjects. Most natural dynamics are expressed by PDEs with varying coefficients (PDEs-VC), which highlights the importance of PDE discovery. Previous algorithms can discover some simple instances of PDEs-VC but fail in the discovery of PDEs with coefficients of higher complexity, as a result of coefficient estimation inaccuracy. In this paper, we propose KO-PDE, a kernel optimized regression method that incorporates the kernel density estimation of adjacent coefficients to reduce the coefficient estimation error. KO-PDE can discover PDEs-VC on which previous baselines fail and is more robust against inevitable noise in data. In experiments, the PDEs-VC of seven challenging spatiotemporal scientific datasets in fluid dynamics are all discovered by KO-PDE, while the three baselines render false results in most cases. With state-of-the-art performance, KO-PDE sheds light on the automatic description of natural phenomenons using discovered PDEs in the real world.
翻译:部分差异方程式(PDEs) 符合科学数据可以代表物理法,具有各种数学导向主题的可解释机制。大多数自然动态由具有不同系数(PDEs-VC)的PDE(PDEs-VC)表示,这凸显了PDE发现的重要性。以前的算法可以发现一些PDEs-VC的简单实例,但由于系数估计不准确,发现PDEs的复杂系数较高,但未能发现PDEs。在本文中,我们提议KO-PDE(KO-PDE)是一种内核优化回归法,结合了相邻系数内核密度估计来减少系数估计错误。KO-PDE(KO-PDE)可以发现PDEs-VC,而先前的基线在哪些方面失败,而且对数据中不可避免的噪音更加有力。在实验中,七个具有挑战性的流体动态中随机科学数据集都是由KO-PDE发现的,而三个基线在多数情况下都得出虚假的结果。在现实世界中,KO-PDE(PDE)对自然现象进行自动描述。