This paper studies higher-order inference properties of nonparametric local polynomial regression methods under random sampling. We prove Edgeworth expansions for $t$ statistics and coverage error expansions for interval estimators that (i) hold uniformly in the data generating process, (ii) allow for the uniform kernel, and (iii) cover estimation of derivatives of the regression function. The terms of the higher-order expansions, and their associated rates as a function of the sample size and bandwidth sequence, depend on the smoothness of the population regression function, the smoothness exploited by the inference procedure, and on whether the evaluation point is in the interior or on the boundary of the support. We prove that robust bias corrected confidence intervals have the fastest coverage error decay rates in all cases, and we use our results to deliver novel, inference-optimal bandwidth selectors. The main methodological results are implemented in companion \textsf{R} and \textsf{Stata} software packages.
翻译:本文在随机抽样中研究非参数本地多元回归法的较高顺序推论特性。 我们证明Edgeworth对间隔测算员的统计和覆盖错误扩展进行了扩大,以(一) 在数据生成过程中保持统一,(二) 允许统一的内核,(三) 覆盖回归函数衍生物的估计。较高顺序扩展的条件及其作为样本大小和带宽序列函数的相关比率,取决于人口回归功能的顺利性,推断程序所利用的顺畅性,以及评价点是否在支持的内部或边界。我们证明,稳健的偏差纠正信任度的误差率在所有案例中都是最快的,我们用我们的结果来提供新颖的、推断-最优化的带宽选择器。主要方法结果在配套的 \ textsf{R} 和\ textsffs{Stata} 软件包中实施。