With the discovery of Wasserstein GANs, Optimal Transport (OT) has become a powerful tool for large-scale generative modeling tasks. In these tasks, OT cost is typically used as the loss for training GANs. In contrast to this approach, we show that the OT map itself can be used as a generative model, providing comparable performance. Previous analogous approaches consider OT maps as generative models only in the latent spaces due to their poor performance in the original high-dimensional ambient space. In contrast, we apply OT maps directly in the ambient space, e.g., a space of high-dimensional images. First, we derive a min-max optimization algorithm to efficiently compute OT maps for the quadratic cost (Wasserstein-2 distance). Next, we extend the approach to the case when the input and output distributions are located in the spaces of different dimensions and derive error bounds for the computed OT map. We evaluate the algorithm on image generation and unpaired image restoration tasks. In particular, we consider denoising, colorization, and inpainting, where the optimality of the restoration map is a desired attribute, since the output (restored) image is expected to be close to the input (degraded) one.
翻译:随着瓦塞尔斯坦 GANs 的发现,最佳运输(OT) 已成为大规模基因模型任务的一个强大工具。 在这些任务中,OT成本通常被用作培训GANs的损失。 与此方法相反, 我们显示OT地图本身可以用作一种基因模型, 提供可比的性能。 以前的类似方法将OT地图作为基因模型, 仅因其在原高维环境空间的性能差而出现在潜伏空间。 相反, 我们直接在环境空间应用OT地图, 例如高维图像空间。 首先, 我们生成一个微量优化算法, 高效地为二次成本( Wasserstein-2 距离) 编译OT地图。 下一步, 我们扩展这个方法, 当输入和输出分布位于不同维度的空间, 并得出计算 OT 地图的错误界限。 我们评估图像生成和未调整图像恢复任务的算法 。 我们特别考虑解调、 颜色化和升级成色, 从而将图像转换为最优化的图像( ) 。