In a widely-studied class of multi-parametric optimization problems, the objective value of each solution is an affine function of real-valued parameters. Then, the goal is to provide an optimal solution set, i.e., a set containing an optimal solution for each non-parametric problem obtained by fixing a parameter vector. For many multi-parametric optimization problems, however, an optimal solution set of minimum cardinality can contain super-polynomially many solutions. Consequently, no polynomial-time exact algorithms can exist for these problems even if $\textsf{P}=\textsf{NP}$. We propose an approximation method that is applicable to a general class of multi-parametric optimization problems and outputs a set of solutions with cardinality polynomial in the instance size and the inverse of the approximation guarantee. This method lifts approximation algorithms for non-parametric optimization problems to their parametric version and provides an approximation guarantee that is arbitrarily close to the approximation guarantee of the approximation algorithm for the non-parametric problem. If the non-parametric problem can be solved exactly in polynomial time or if an FPTAS is available, our algorithm is an FPTAS. Further, we show that, for any given approximation guarantee, the minimum cardinality of an approximation set is, in general, not $\ell$-approximable for any natural number $\ell$ less or equal to the number of parameters, and we discuss applications of our results to classical multi-parametric combinatorial optimizations problems. In particular, we obtain an FPTAS for the multi-parametric minimum $s$-$t$-cut problem, an FPTAS for the multi-parametric knapsack problem, as well as an approximation algorithm for the multi-parametric maximization of independence systems problem.
翻译:在一个广泛研究的多参数优化问题类别中,每种解决方案的客观值都是真实价值参数的偏差函数。 然后, 我们的目标是提供一个最佳解决方案集, 即一组包含通过固定参数矢量获得的每个非参数问题的最佳解决方案。 但是, 对于许多多参数优化问题, 一套最优解决方案集可以包含超光谱化的多种解决方案。 因此, 即便美元( textsfsf{ Páátextsf{NP}$), 也不可能存在这些问题的超正数时间精确算法。 我们建议一种适用于多参数优化问题和产出等通用的近比值方法。 对于非参数优化问题, 这个方法可以将非参数优化问题的近似算算法提升到其偏差版本, 并且为非参数问题的近似近比值算算法的近比值保证。 如果非参数问题可以完全解决, 美元( 美元) 美元( ) 美元( ) 美元( ) AS 和 美元( 美元( ) 美元( ) 美元( ) ) 美元( ) 美元( ) ( ) ( 美元) ( 美元) ( ) ( 美元) ( ) ( 美元) ( ) ( ) ( 美元) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 美元) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )