Current approaches for 3D human motion synthesis can generate high-quality 3D animations of digital humans performing a wide variety of actions and gestures. However, there is still a notable technological gap in addressing the complex dynamics of multi-human interactions within this paradigm. In this work, we introduce ReMoS, a denoising diffusion-based probabilistic model for reactive motion synthesis that explores two-person interactions. Given the motion of one person, we synthesize the reactive motion of the second person to complete the interactions between the two. In addition to synthesizing the full-body motions, we also synthesize plausible hand interactions. We show the performance of ReMoS under a wide range of challenging two-person scenarios including pair-dancing, Ninjutsu, kickboxing, and acrobatics, where one person's movements have complex and diverse influences on the motions of the other. We further propose the ReMoCap dataset for two-person interactions consisting of full-body and hand motions. We evaluate our approach through multiple quantitative metrics, qualitative visualizations, and a user study. Our results are usable in interactive applications while also providing an adequate amount of control for animators.
翻译:暂无翻译