Due to the importance of Android app quality assurance, many automated GUI testing tools have been developed. Although the test algorithms have been improved, the impact of GUI rendering has been overlooked. On the one hand, setting a long waiting time to execute events on fully rendered GUIs slows down the testing process. On the other hand, setting a short waiting time will cause the events to execute on partially rendered GUIs, which negatively affects the testing effectiveness. An optimal waiting time should strike a balance between effectiveness and efficiency. We propose AdaT, a lightweight image-based approach to dynamically adjust the inter-event time based on GUI rendering state. Given the real-time streaming on the GUI, AdaT presents a deep learning model to infer the rendering state, and synchronizes with the testing tool to schedule the next event when the GUI is fully rendered. The evaluations demonstrate the accuracy, efficiency, and effectiveness of our approach. We also integrate our approach with the existing automated testing tool to demonstrate the usefulness of AdaT in covering more activities and executing more events on fully rendered GUIs.
翻译:由于Android App 质量保证的重要性,开发了许多自动图形用户界面测试工具。 虽然测试算法已经改进, 但图形用户界面的影响却被忽视了。 一方面, 设置很长的等待时间执行完全完成的图形用户界面上的事件会放慢测试过程。 另一方面, 设定一个很短的等待时间会使事件执行部分完成的图形用户界面上的事件, 这会对测试效果产生不利影响。 最佳的等待时间应该平衡效果和效率。 我们提议AdaT, 一种轻量级图像法, 以动态地调整基于图形用户界面显示状态的事件间时间。 鉴于图形用户界面的实时流, AdaT 提供了一个深度的学习模型, 以推导生成状态, 并与测试工具同步, 以在界面完全完成时安排下一个事件。 评估将显示我们的方法的准确性、 效率和有效性。 我们还将我们的方法与现有的自动测试工具结合起来, 以显示AdaT在覆盖更多活动和在完全完成的图形用户界面上执行更多事件的有用性 。