Adaptive Bitrate (ABR) Streaming over the cellular networks has been well studied in the literature; however, existing ABR algorithms primarily focus on improving the end-users' Quality of Experience (QoE) while ignoring the resource consumption aspect of the underlying device. Consequently, proactive attempts to download video data to maintain the user's QoE often impact the battery life of the underlying device unless the download attempts are synchronized with the network's channel condition. In this work, we develop EnDASH-5G -- a wrapper over the popular DASH-based ABR streaming algorithm, which establishes this synchronization by utilizing a network-aware video data download mechanism. EnDASH-5G utilizes a novel throughput prediction mechanism for 5G mmWave networks by upgrading the existing throughput prediction models with a transfer learning-based approach leveraging publicly available 5G datasets. It then exploits deep reinforcement learning to dynamically decide the playback buffer length and the video bitrate using the predicted throughput. This ensures that the data download attempts get synchronized with the underlying network condition, thus saving the device's battery power. From a thorough evaluation of EnDASH-5G, we observe that it achieves a near $30.5\%$ decrease in the maximum energy consumption than the state-of-the-art Pensieve ABR algorithm while performing almost at par in QoE.


翻译:文献中已经对移动电话网络的适应性比特拉特(ABR)流动进行了很好的研究;然而,现有的ABR算法主要侧重于提高终端用户的经验质量(QoE),而忽略了基本设备的资源消耗方面。因此,为维护用户的QoE而下载视频数据的积极尝试往往会影响基本设备的电池寿命,除非下载尝试与网络的频道状态同步。在这项工作中,我们开发了EnDASH-5G -- -- 基于以DASH为基础的AB流动算法的包装器,它通过使用网络认知性视频数据下载机制来建立这种同步性。EnDASH-5G利用基于转移的学习方法更新了现有的5G数据集的传输性预测模型,从而对现有的5GmmWave网络的传输性预测机制进行了创新。然后利用深层强化学习来动态地决定回放缓冲长度和视频比量预测值。这确保数据下载尝试与基础网络状态同步,从而通过使用网络数据下载机制的视频数据下载机制,利用网络数据下载机制的网络数据下载机制使用网络数据质量数据下载数据下载质量数据,从而在接近A-5-DA-DAS在最大耗能中保存。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
专知会员服务
38+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
45+阅读 · 2021年1月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员