A key component of understanding hand-object interactions is the ability to identify the active object -- the object that is being manipulated by the human hand -- despite the occlusion induced by hand-object interactions. Based on the observation that hand appearance is a strong indicator of the location and size of the active object, we set up our active object detection method as a sequential decision-making process that is conditioned on the location and appearance of the hands. The key innovation of our approach is the design of the active object detection policy that uses an internal representation called the Relational Box Field, which allows for every pixel to regress an improved location of an active object bounding box, essentially giving every pixel the ability to vote for a better bounding box location. The policy is trained using a hybrid imitation learning and reinforcement learning approach, and at test time, the policy is used repeatedly to refine the bounding box location of the active object. We perform experiments on two large-scale datasets: 100DOH and MECCANO, improving AP50 performance by 8% and 30%, respectively, over the state of the art.


翻译:理解手向物体相互作用的一个关键组成部分是确定活动对象的能力 -- -- 尽管手向物体的交互作用引起封闭,但人体手操纵的物体 -- -- 尽管手向物体的交互作用导致的封闭。根据对手外观是活动物体位置和大小的有力指标的观察,我们设置了主动物体探测方法,作为以手的位置和外观为条件的顺序决策程序。我们方法的关键创新是设计主动物体探测政策,该政策使用被称为 " 关系盒字段 " 的内部代表制,使每个象素能够反向活动物体的较佳位置,基本上使每个象素能够投票确定更好的捆绑框位置。该政策是使用混合模仿和强化学习方法进行训练的,在试验时间,该政策被反复用来改进活动物体的捆绑位置。我们在两个大型数据集上进行了实验:100DH和MECCANO, 将AP50的性能分别提高8%和30%,超过艺术状态。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员