Precision medicine is a rapidly expanding area of health research wherein patient level information is used to inform treatment decisions. A statistical framework helps to formalize the individualization of treatment decisions that characterize personalized management plans. Numerous methods have been proposed to estimate individualized treatment rules that optimize expected patient outcomes, many of which have desirable properties such as robustness to model misspecification. However, while individual data are essential in this context, there may be concerns about data confidentiality, particularly in multi-centre studies where data are shared externally. To address this issue, we compared two approaches to privacy preservation: (i) data pooling, which is a covariate microaggregation technique and (ii) distributed regression. These approaches were combined with the doubly robust yet user-friendly method of dynamic weighted ordinary least squares to estimate individualized treatment rules. In simulations, we extensively evaluated the performance of the methods in estimating the parameters of the decision rule under different assumptions. The results demonstrate that double robustness is not maintained in data pooling setting and that this can result in bias, whereas the distributed regression provides good performance. We illustrate the methods via an analysis of optimal Warfarin dosing using data from the International Warfarin Consortium.
翻译:精确医学是保健研究的一个迅速扩大的领域,病人一级的信息被用于为治疗决定提供信息。一个统计框架有助于使作为个性化管理计划特点的治疗决定的个性化正规化。提出了许多方法来估计个人化治疗规则,优化预期病人结果,其中许多规则具有理想的特性,例如强健性来模拟具体化的模型。然而,虽然个人数据在这方面至关重要,但对数据保密,特别是在数据对外共享的多中心研究中的数据保密可能存在关切。为解决这一问题,我们比较了两种保护隐私的方法:(一) 数据集中,这是一种可变微集技术,以及(二) 分布式回归。这些方法与动态加权普通最低方位的用户友好型方法相结合,用以估计个性化治疗规则。在模拟中,我们广泛评价了不同假设下估计决定规则参数的方法的性能。结果显示,在数据收集中没有保持双强性,这可能导致偏差,而分布式回归则提供了良好的表现。我们通过对使用国际战争财团的数据进行最佳的Warfarin dosing方法加以说明。