Black-box optimization formulations for biological sequence design have drawn recent attention due to their promising potential impact on the pharmaceutical industry. In this work, we propose to unify two seemingly distinct worlds: likelihood-free inference and black-box optimization, under one probabilistic framework. In tandem, we provide a recipe for constructing various sequence design methods based on this framework. We show how previous optimization approaches can be "reinvented" in our framework, and further propose new probabilistic black-box optimization algorithms. Extensive experiments on sequence design application illustrate the benefits of the proposed methodology.
翻译:用于生物序列设计的黑盒优化配方最近引起了人们的注意,因为它们可能对制药业产生潜在影响。在这项工作中,我们提议在一个概率框架下统一两个看起来截然不同的世界:无概率的推断和黑盒优化。同时,我们提供了一个根据这个框架构建各种序列设计方法的秘方。我们展示了以前的优化方法如何能够在我们的框架内“发明”,并进一步提出了新的概率黑盒优化算法。关于序列设计应用的广泛实验说明了拟议方法的好处。