We present a novel approach for completing and reconstructing 3D shapes from incomplete scanned data by using deep neural networks. Rather than being trained on supervised completion tasks and applied on a testing shape, the network is optimized from scratch on the single testing shape, to fully adapt to the shape and complete the missing data using contextual guidance from the known regions. The ability to complete missing data by an untrained neural network is usually referred to as the deep prior. In this paper, we interpret the deep prior from a neural tangent kernel (NTK) perspective and show that the completed shape patches by the trained CNN are naturally similar to existing patches, as they are proximate in the kernel feature space induced by NTK. The interpretation allows us to design more efficient network structures and learning mechanisms for the shape completion and reconstruction task. Being more aware of structural regularities than both traditional and other unsupervised learning-based reconstruction methods, our approach completes large missing regions with plausible shapes and complements supervised learning-based methods that use database priors by requiring no extra training data set and showing flexible adaptation to a particular shape instance.


翻译:我们通过深层神经网络从不完整的扫描数据中提出完成和重建3D形状的新办法。网络不是接受关于监督完成任务的培训,而是在测试形状上应用,而是在单一测试形状上从零开始优化,以便完全适应形状并使用已知区域的背景指导完成缺失的数据。未经训练的神经网络完成缺失数据的能力通常被称为深层前科。在本文件中,我们从神经切核角度解释前深层的外形,并表明受过训练的CNN的已完成的形状补丁自然与现有的补丁相似,因为它们位于NTK引出的内核特征空间。这种解释使我们能够设计更有效的网络结构和学习机制,用于形状完成和重建任务。我们的方法比传统和其他未经监督的基于学习的重建方法都更了解结构上的规律性。我们的方法以合理的形状完成大缺失区域,并补充在使用数据库之前使用的受监督的基于学习的方法,不需要额外的培训数据集,并显示对特定形状的灵活调整。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员