As the reliability of cheap, off-the-shelf autonomous platforms increases, so does the risk posed by intelligent multi-agent systems to military operations. In the contemporary context of the Russo-Ukrainian war alone, we have seen autonomous aerial vehicles and surface vessels deployed both individually and in multitude to deliver critical effects to both sides. While there is a large body of literature on tactical level communications and interactions between agents, the exploration of high-level command and control (C2) structures that will underpin future autonomous multi-agent military operations is a less explored area of research. We propose a quantitative game-theoretic framework to study effective C2 structures in cooperative and competitive multi-agent swarming scenarios. To test our framework, we construct a virtual environment where two adversarial swarms compete to achieve outcomes comparable to real-world scenarios. The framework we present in this paper enables us to quickly test and interrogate different C2 configurations in multi-agent systems to explore C2 as a force multiplier when at a force disadvantage.
翻译:暂无翻译