For efficient modulation and error control coding, the deliberate flipping approach imposes the run-length-limited(RLL) constraint by bit error before recording. From the read side, a high coding rate limits the correcting capability of RLL bit error. In this paper, we study the low-density parity-check (LDPC) coding for RLL constrained recording system based on the Unequal Error Protection (UEP) coding scheme design. The UEP capability of irregular LDPC codes is used for recovering flipped bits. We provide an allocation technique to limit the occurrence of flipped bits on the bit with robust correction capability. In addition, we consider the signal labeling design to decrease the number of nearest neighbors to enhance the robust bit. We also apply the density evolution technique to the proposed system for evaluating the code performances. In addition, we utilize the EXIT characteristic to reveal the decoding behavior of the recommended code distribution. Finally, the optimization approach for the best distribution is proven by differential evolution for the proposed system.
翻译:暂无翻译