Diffusion generative models unlock new possibilities for inverse problems as they allow for the incorporation of strong empirical priors into the process of scientific inference. Recently, diffusion models received significant attention for solving inverse problems by posterior sampling, but many challenges remain open due to the intractability of this sampling process. Prior work resorted to Gaussian approximations to conditional densities of the reverse process, leveraging Tweedie's formula to parameterise its mean, complemented with various heuristics. In this work, we leverage higher order information using Tweedie's formula and obtain a finer approximation with a principled covariance estimate. This novel approximation removes any time-dependent step-size hyperparameters required by earlier methods, and enables higher quality approximations of the posterior density which results in better samples. Specifically, we tackle noisy linear inverse problems and obtain a novel approximation to the gradient of the likelihood. We then plug this gradient estimate into various diffusion models and show that this method is optimal for a Gaussian data distribution. We illustrate the empirical effectiveness of our approach for general linear inverse problems on toy synthetic examples as well as image restoration using pretrained diffusion models as the prior. We show that our method improves the sample quality by providing statistically principled approximations to diffusion posterior sampling problem.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2021年2月13日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
21+阅读 · 2021年2月13日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
Arxiv
27+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员