Recent work on Graph Neural Networks has demonstrated that self-supervised pretraining can further enhance performance on downstream graph, link, and node classification tasks. However, the efficacy of pretraining tasks has not been fully investigated for downstream large knowledge graph completion tasks. Using a contextualized knowledge graph embedding approach, we investigate five different pretraining signals, constructed using several graph algorithms and no external data, as well as their combination. We leverage the versatility of our Transformer-based model to explore graph structure generation pretraining tasks (i.e. path and k-hop neighborhood generation), typically inapplicable to most graph embedding methods. We further propose a new path-finding algorithm guided by information gain and find that it is the best-performing pretraining task across three downstream knowledge graph completion datasets. While using our new path-finding algorithm as a pretraining signal provides 2-3% MRR improvements, we show that pretraining on all signals together gives the best knowledge graph completion results. In a multitask setting that combines all pretraining tasks, our method surpasses the latest and strong performing knowledge graph embedding methods on all metrics for FB15K-237, on MRR and Hit@1 for WN18RRand on MRR and hit@10 for JF17K (a knowledge hypergraph dataset).


翻译:最近有关图神经网络的研究表明,自监督预训练可以进一步提高下游图形、链接和节点分类任务的性能。然而,预训练任务的有效性尚未在下游大型知识图形完成任务中得到充分研究。使用一个上下文化知识图嵌入方法,我们研究了五种不同的预训练信号,这些信号使用几种图算法和没有外部数据来构建,以及它们的组合。我们利用我们基于Transformer的模型的多功能性来探索图形结构生成预训练任务(即路径和k-hop邻域生成),这通常对于大多数图嵌入方法不适用。我们进一步提出了一种新的路径查找算法,该算法受信息增益指导,并发现它是在三个下游知识图形完成数据集中表现最佳的预训练任务。虽然使用我们的新路径查找算法作为预训练信号可以提供2-3%的MRR改进,但我们表明,在所有信号的预训练上表现最好的是多个预训练任务组合。在结合所有预训练任务的多任务设置中,我们的方法在FB15K-237的所有指标上均超过了最新和表现强劲的知识图嵌入方法,在WN18RR的MRR和Hit@1以及在JF17K(一种知识超图数据集)的MRR和hit@10上也是如此。

0
下载
关闭预览

相关内容

在搭建网络模型时,需要随机初始化参数,然后开始训练网络,不断调整直到网络的损失越来越小。在训练的过程中,一开始初始化的参数会不断变化。当参数训练到比较好的时候就可以将训练模型的参数保存下来,以便训练好的模型可以在下次执行类似任务时获得较好的结果。
专知会员服务
45+阅读 · 2021年6月1日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
一文带你浏览Graph Transformers
PaperWeekly
1+阅读 · 2022年7月8日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2019年11月26日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
15+阅读 · 2019年9月11日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关资讯
一文带你浏览Graph Transformers
PaperWeekly
1+阅读 · 2022年7月8日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员