Recent work on Graph Neural Networks has demonstrated that self-supervised pretraining can further enhance performance on downstream graph, link, and node classification tasks. However, the efficacy of pretraining tasks has not been fully investigated for downstream large knowledge graph completion tasks. Using a contextualized knowledge graph embedding approach, we investigate five different pretraining signals, constructed using several graph algorithms and no external data, as well as their combination. We leverage the versatility of our Transformer-based model to explore graph structure generation pretraining tasks (i.e. path and k-hop neighborhood generation), typically inapplicable to most graph embedding methods. We further propose a new path-finding algorithm guided by information gain and find that it is the best-performing pretraining task across three downstream knowledge graph completion datasets. While using our new path-finding algorithm as a pretraining signal provides 2-3% MRR improvements, we show that pretraining on all signals together gives the best knowledge graph completion results. In a multitask setting that combines all pretraining tasks, our method surpasses the latest and strong performing knowledge graph embedding methods on all metrics for FB15K-237, on MRR and Hit@1 for WN18RRand on MRR and hit@10 for JF17K (a knowledge hypergraph dataset).
翻译:最近有关图神经网络的研究表明,自监督预训练可以进一步提高下游图形、链接和节点分类任务的性能。然而,预训练任务的有效性尚未在下游大型知识图形完成任务中得到充分研究。使用一个上下文化知识图嵌入方法,我们研究了五种不同的预训练信号,这些信号使用几种图算法和没有外部数据来构建,以及它们的组合。我们利用我们基于Transformer的模型的多功能性来探索图形结构生成预训练任务(即路径和k-hop邻域生成),这通常对于大多数图嵌入方法不适用。我们进一步提出了一种新的路径查找算法,该算法受信息增益指导,并发现它是在三个下游知识图形完成数据集中表现最佳的预训练任务。虽然使用我们的新路径查找算法作为预训练信号可以提供2-3%的MRR改进,但我们表明,在所有信号的预训练上表现最好的是多个预训练任务组合。在结合所有预训练任务的多任务设置中,我们的方法在FB15K-237的所有指标上均超过了最新和表现强劲的知识图嵌入方法,在WN18RR的MRR和Hit@1以及在JF17K(一种知识超图数据集)的MRR和hit@10上也是如此。