We consider the problem of multiterminal secret key agreement (SKA) in wiretapped source model where terminals have access to samples of correlated random variables from a publicly known joint probability distribution. The adversary has access to a side information variable, that is correlated with terminals' variables. We focus on a special type of terminal variables in this model, known as Tree-PIN, where the relation between variables of the terminals can be represented by a tree. The study of Tree-PIN source model is of practical importance as it can be realized in wireless network environments. We derive the wiretap secret key capacity of Tree-PIN with independent leakage, and give lower and upper bounds on the maximum achievable secret key length in finite-length regime. We then prove an upper bound and a lower bound for the wiretap secret key capacity of a wiretapped PIN and give two conditions for which these bounds are tight. We also extend our main result to two other related models and prove their corresponding capacities. At the end, we argue how our analysis suggests that public interaction is required for achieving the multiterminal WSK capacity.
翻译:在有线源模式中,终端能够从公开已知的共同概率分布中获取相关随机变量样本的多端秘密密钥协议(SKA)问题。 对手可以访问侧端信息变量, 与终端变量相关。 我们关注该模式中的一种特殊类型的终端变量, 称为树- PIN, 其中终端变量之间的关系可以用树来代表。 对树- PIN源模型的研究具有实际重要性, 因为它可以在无线网络环境中实现。 我们通过独立渗漏获取树- PIN 的窃听秘密密钥能力, 并在长程系统中对最大可实现的秘密密钥长度设定下下下限。 我们随后证明被窃的PIN 的窃听秘密关键能力具有上下限和下限, 并给出了这些连接很紧的两个条件。 我们还将我们的主要结果扩展为另外两个相关模式, 并证明它们的相应能力。 最后, 我们的分析表明, 我们的分析表明, 要实现多端的WSK能力需要公众互动。