There has been an increasing interest in utilizing machine learning methods in inverse problems and imaging. Most of the work has, however, concentrated on image reconstruction problems, and the number of studies regarding the full solution of the inverse problem is limited. In this work, we study a machine learning based approach for the Bayesian inverse problem of photoacoustic tomography. We develop an approach for estimating the posterior distribution in photoacoustic tomography using an approach based on the variational autoencoder. The approach is evaluated with numerical simulations and compared to the solution of the inverse problem using a Bayesian approach.
翻译:人们对在反问题和成像中使用机器学习方法的兴趣日益浓厚,但大部分工作集中于图像重建问题,关于反问题全面解决办法的研究数量有限,在这项工作中,我们研究一种基于机器的学习方法,以解决巴耶斯反光声学摄影成像学问题,我们开发了一种方法,利用基于变异自动电解码法的方法,估计光声学成像摄影的后部分布,用数字模拟法加以评估,并与使用巴耶斯方法解决反向问题的方法进行比较。