Geometric matching is a challenging computer vision task that involves finding correspondences between two views of a 3D scene. Dense geometric matching, i.e., finding every matching pixel, is an appealing approach due to, among other things, the capacity for sub-pixel accuracy and low-texture robustness. While previous results have shown that sparse and semi-sparse methods are better suited than dense approaches for geometry estimation, we propose a novel dense method that outperforms them. We accomplish this by formulating dense global matching as a probabilistic regression task using deep kernels, in contrast to typical correlation volume processing. Furthermore, we show that replacing local correlation with warped feature stacking in the refinement stage further boosts performance. Finally, we observe that a systematic attenuation of the model confidence improves geometry estimation results. Our full approach, $\textbf{D}$eep $\textbf{K}$ernelized Dense Geometric $\textbf{M}$atching, sets a new state-of-the-art on the competitive HPatches, YFCC100m, MegaDepth-1500, and ScanNet-1500 geometry estimation benchmarks. We provide code for all our experiments, instructions for downloading datasets, and pretrained models, at https://github.com/Parskatt/dkm
翻译:计算机的几何匹配是一项具有挑战性的计算机愿景任务,它涉及在 3D 场景的两个视图之间找到对应的对应。 密度几何匹配, 即找到每个匹配像素, 是一种吸引人的方法, 其原因之一是子像素精度和低文本强度的能力。 虽然先前的结果表明, 稀有和半偏差的方法比密集的几何估计方法更适合, 但是我们建议了一种比重的新颖的密集方法。 我们通过利用深度的内核, 而不是典型的相关量处理, 将密集的全球匹配设计成一种稳定性回归任务。 此外, 我们显示, 用精细化阶段的扭曲特性堆叠取代当地的相关性, 进一步提升了性能。 最后, 我们观察到, 系统地降低模型信任可以改善几何估计结果。 我们的整个方法, $\ textbf{D} $ep $@ k} 。 内核化的 Densericaltical $\ textb{M} 来完成这个任务, 在具有竞争力的 HPatches、 YNet- 15- advidustrual prisadal prisad press pressal press.